
Journal of Global Optimization13: 445–454, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

445

Random and Quasi-Random Linkage Methods
in Global Optimization

FABIO SCHOEN
Dipartimento di Sistemi e Informatica, Firenze, Italy

(Accepted in final form 30 June 1998)

Abstract. In this paper a brief survey of recent developments in the field of stochastic global
optimization methods will be presented. Most methods discussed fall in the category of two-phase
algorithms, consisting in a global or exploration phase, obtained through sampling in the feasible
domain, and a second or local phase, consisting of refinement of local knowledge, obtained through
classical descent routines. A new class of methods is also introduced, characterized by the fact that
sampling is performed through deterministic, well distributed, sample points. It is argued that for
moderately sized problems this approach might prove more efficient than those based upon uniform
random samples.
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1. Introduction

In this paper an analysis of some stochastic algorithms for global optimization will
be carried out with the aim of discovering some characteristic of their finite time
behaviour. In particular methods belonging to the class oftwo-phasealgorithms
will be analyzed. Two-phase methods consist of a global, or exploration, phase
aimed at sampling, as evenly as possible, the feasible region (Phase I), coupled
with a strategy for the refinement, or approximation, of local optima (Phase II).
Many, if not all, methods of global optimization are based upon such a general
scheme. Usually the first phase is implemented through uniform random sam-
pling or through deterministic sequences, while the second phase, depending on
the structure of the objective function, is usually based upon local optimization
routines. For objective functions whose structure is so poor (or whose derivatives
are so difficult to evaluate) that classical, gradient based, local optimization is not
possible, frequently the local phase is obtained through localized random sampling,
i.e., sampling in small neighborhoods of the current point. An interesting method
in this class is described in Locatelli (1996), where theoretical results are derived
for a class of simulated-annealing algorithm based upon sampling in small spheres
around the current iterate.

Two phase methods in the strict sense, however, are based upon starting local
optimization routines from carefully selected points in a sample. For a brief survey
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of two-phase methods in the strict sense the reader might wish to consult Schoen
(1998).

In this paper, after a survey of recent results concerning a class of two phase
methods with strong theoretical properties and good practical behaviour, some
considerations will be made on the finite time behaviour of such methods. In fact
all known theoretical results are based upon asymptotic considerations, while little
is known on the practical behaviour in the first iterations. Such an analysis will
lead to the proposal of discarding random samples, at least for moderately sized
global optimization problems, and to substitute them with deterministic sequences
of points, built in such a way as to guarantee an extremely even coverage of the
feasible region. While this idea is not new in the literature, published results usually
consist in just substituting well-spaced quasi-random sequences in place of uniform
samples; here it is argued that such a substitution implies a radical change in the
definition itself of the algorithm.

2. Simple Linkage methods

In this section a survey will be presented of the main definitions and properties of
Simple Linkage, a class of methods which was recently developed and analyzed in
Locatelli and Schoen (1996, 1998). Let us consider the basic global optimization
problem

f ? = min
x∈[0,1]d

f (x)

with f a continuous function, as smooth as it is required by the local optimization
algorithm we plan to use. The scheme of Simple Linkage is the following:
1. setk := 0; chooseσ > 0 andε > 0;
2. letk := k + 1;
3. generate a single random pointX in [0,1]d ;
4. let the thresholdrk;σ be defined as follows:

rk;σ := π−1/2

(
0(1+ d/2) σ logk

k

)1/d

; (1)

5. apply a local search algorithm fromX except if∃Xj in the sample:

‖X −Xj‖ ≤ rk;σ andf (Xj ) ≤ f (X)+ ε (2)

6. Stop? If not, addX to the sample and goto 2.
It is not prescribed in this method to store the local optima found during the it-
erations; even if the theoretical results remain unchanged, some experiments in
this direction displayed that this inclusion had no significant impact on the overall
performance.

This method was originally inspired by Multi-Level Single-Linkage (Rinnooy
Kan and Timmer, 1987a,b) and was built in order to circumvent the most relevant
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defects of that algorithm, in particular the necessity of sampling in batches of
points, the necessity of reconsidering, after each sample, the whole set of sam-
pled points as possible candidates for starting local searches, and the impossibil-
ity of starting local searches from points near to the boundary. All these defects
were removed, without sacrificing any of the theoretical properties of the method.
Moreover, computational results were obtained which confirmed the superiority of
this method as well as its applicability to problems with a high number of vari-
ables. Some details on such experiments are reported in the above cited papers and
in Schoen (1997), where a variant of Simple Linkage is applied to the minimization
of the Lennard-Jones potential energy for clusters of up to 20 atoms: these are
extremely hard global optimization problems with a number of variables which is
3 times the number of atoms and an estimated number of local optima which is
exponential in the number of atoms.

The main theoretical properties of Simple Linkage are the following:
1. the best observed function value converges, with probability 1, to the global

optimum valuef ?;
2. the probability of starting a local search goes to 0 ifσ > 0;
3. the total number of local searches performed even in the case the algorithm is

never stopped remains finite ifσ > 2d/d.
Unfortunately, these assertions express asymptotic properties and fail to give

any insight in what actually happens in the first iterations of these methods. In
particular, all of the properties rely on the fact that a continuous function in a
compact set is also uniformly continuous; thanks to this fact, it is possible to prove
Locatelli and Schoen (1998) that, provided thatk is large enough, a local search
is started from a sample pointX if and only if none of the pointsX1,X2, . . . , Xk
is closer toX than the thresholdrk;σ . This means that, for large enoughk, the
decision whether to start or not a local search no more depends onf , but only on
the relative density of sample points. While this fact is very desirable from the point
of view of theoretical analysis, its practical effects are largely unknown. It should
be observed that the values ofk which allow us to neglect function values are
usually astronomically high; what happens in finite time may thus be completely
different in general from what asymptotic theory predicts.

In Schoen (1997) some considerations on this finite time behaviour were carried
out. In particular, it was observed that for high-dimensional problems the value of
the threshold (1) is very high; its order of magnitude, for fixedk and increasing
dimensiond, is comparable to the diameter of the unit hypercube. This fact implies
that the neighborhood inside which no better sample point than the current one
should be found in order to start a local search is comparable with the whole feasi-
ble set. Thus the finite time behaviour of the method is similar to that of Best Start,
a simple algorithm which prescribes to start a local search only when a record, i.e.
the best observed function value so far, is hit.

A partial remedy has been given in Schoen (1997), where two devices were
introduced in order to reduce the threshold (1). The first one is to change the
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norm used in the comparison from the Euclidean to the infinite (or maximum)
norm. This has the effect of keeping the diameter of the feasible region fixed as
the dimensiond increases. A second device used was that of letting the threshold
be different depending on the position of the current sample point with respect to
the boundary. The rationale behind this modification is that the magnitude of the
threshold is largely determined by the density of uniform points near the border
and, in particular, near the vertices of the hypercube. The results obtained with
this modifications are quite encouraging, in particular for large global optimization
problems. The modified method becomes the following:
1. setk := 0; chooseσ > 0 andε > 0;
2. letk := k + 1;
3. generate a single random pointX in [0,1]d ;
4. let

Ri;k;σ :=
(
σ 2i−d

logk

k

)1/d

; (3)

5. let i := number of components ofX which are less thanR0;k;σ or greater than
1− R0;k;σ ,

6. apply a local search algorithm fromX except if∃Xj in the sample:

‖X −Xj‖∞ ≤ Ri;k;σ and f (Xj ) ≤ f (X)+ ε
7. Stop? If not, addX to the sample and goto 2.

All the theoretical properties of the basic Simple Linkage algorithm are retained
in this modification; however the fact that the threshold is different for central
points and border points makes the method more efficient for higher dimensional
problems.

Even with this modifications however, the problem remains of relatively high
thresholds in the first iterations; the reader should not be illuded by the word ‘few’:
even in quite small dimensional problems this number may well be over several
thousands. The net effect of this starting anomaly is that for a long initial period
methods based upon uniform random sampling behave almost like Best Start; thus
from one side a complex threshold mechanism is set up without being useful; on
the other side, Best Start is very inefficient, and it can become very slow especially
when a local optimum whose function value is quite near to the global one is
discovered: in this case, even if the region of attraction of the global optimum
might in principle be very large, a local search in its basin of attraction will not be
started until a point better than the best so far is sampled.
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3. Sampling with quasi random sequences

As it has been argued in the preceding section, methods based upon starting local
searches from points which are locally optimal can become quite inefficient when
too large a threshold is chosen in the definition of ‘local optimality’. In particular
all of the thresholds used in methods based upon random uniform sampling are
O
(
(logk/k)1/d

)
and, depending on the constant of proportionality and/or on the

dimensiond, this value is usually so large in the first iterations as to prevent most
local searches to be started. It should come as no surprise the fact that the asymp-
totic behaviour of the threshold is determined by classical properties of uniform
random sampling. In particular it was shown in Deheuvels (1983) that, given a
uniform sampleX1, . . . , Xk in [0,1]d , themaximum dispersion

d ′(X1, . . . , Xk) := sup
x∈[0,1]d

min
i=1,k
‖x −Xi‖∞

is almost surely

O
(
(logk/k)1/d

)
.

Thus it is natural that all the results related to the finiteness of the total number
of local searches performed rely on thresholds with similar asymptotic behaviour.
But, as we already pointed out, if this is a desirable asymptotic feature, its finite
time behaviour may inhibit most local searches.

Another difficulty with methods based upon random sampling is that, even in
finite time, there are two distinct possibilities for a local search to be started: first,
it might be started from a local record, i.e., from the best point in a neighborhood
whose diameter is regulated by the chosen threshold. As we already noticed, this
event, in particular during the first iterations and when using slowly decreasing
thresholds, happens usually only when the current point is a global (as opposed
to local) record. The second possibility for starting a local search comes from the
fact that the randomness of the sample might produce a ‘large gap’, i.e. a point
might be sampled very far from all the other points in the sample; in this case a
local search will be started because that point is obviously a local record (being the
unique point in a sufficiently large region). It is thus likely that a local search is
started erroneously, just as a consequence of the fact that a ‘hole’ in the sample has
been produced.

In order to try to overcome these two difficulties, different sampling strategies
have been recently investigated. In particular both defects can be, at least in part,
avoided by means of sampling in a more even way. The literature on deterministic
sequences with low dispersion is quite large; the interested reader might consult the
monograph Niederreiter (1992) or the recent book Drmota and Tichy (1997). Some
attempts of using quasi-random sequences with low dispersion can be found even
in the global optimization literature; however in those attempts a quasi-random
sequence was just used as a substitute for a uniform random one; here we claim that
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the substitution must be carried out with great care and possibly with a redesign of
the algorithm.

One of the most well known sequences of point inRd characterized by low
dispersion is the so-calledHalton sequence, first published in Halton (1960). These
sequences possess very interesting properties which make them quite suitable for
use in our setting. In particular, ifX1, . . . , Xk have been generated as a Halton
sequence, the following hold:

– d ′(X1, . . . , Xk) ≤ k−1/d maxi=1,... ,d bi whereb1, . . . , bd are different prime
numbers;

– the generick–th point in the sequence may be generated directly, without the
necessity of knowing the previousk − 1 points;

– being the sequence extremely regular, it may be possible to speed up compu-
tations when looking for the nearest neighbor of the current point.

The first characteristics shows that the Halton sequence is sensibly more dense
and regular than the uniform one, being the dispersionO(k1/d). So, for a given
dimensiond, using quasi-random points in place of uniformly distributed ones,
guarantees a much more dense coverage of the feasible set. Unfortunately the
constant of proportionality grows quite rapidly as the dimensiond increases (but
the same happens also for random samples). Results can be derived from the well
known prime number theorem, a consequence of which is that thed–th prime
number grows asymptotically asd(logd + log logd − 1) Ribenboim (1995). This
fact makes Halton sequences adapt only for low-dimensional problems. The second
property, i.e. the possibility of directly generating each point in the sequence, can
be exploited in our setting in order to avoid one of the major problems in two-
phase methods, i.e. the necessity of storing the whole sample in order to be able
to compute nearest neighbor distances. In this case it is sufficient to store only
function values at each sampled point, with a memory requirement ofO(k), as
opposed toO(kd), necessary when the whole sample has to be memorized. Finally,
an implementation might exploit also the fact that the regularity of the sequence is
predictable and it is possible to restrict the explicit distance computation only to a
few candidate points. This possibility is actually under investigation and details are
expected to appear in a forthcoming paper.

In our first experiments we decided not to use the Halton sequence, but to
generate points according to a more complex mechanism described in the cited
monograph Niederreiter (1992). The sequence we used is described in Chapter 4
of Niederreiter’s monograph, under the name of(t, s)-sequence; in particular we
used(T2(d), d)-sequences in base 2 and based our computations on a public do-
main code published in Bratley et al. (1994). We refer the interested reader to the
cited monograph for details on these sequences. Here, we just cite the result on
dispersion which guarantees the following upper bound

d ′(X1, . . . , Xk) ≤ 21+T2(d)/d

k1/d
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whereT2(d) is a function (whose values are tabulated in Niederreiter, 1992) which
does not grow too fast. In particular it can be proven that

T2(d) < d(log2 d + log2 log2 d + 1)

Again, the constant in the asymptotic expression for the dispersion is asymptotic
to d logd. However, this is an upper bound and, in practice, the actual constant is
quite lower; recent results also appeared which enable to build sequences in base 2
with a coefficient in the dispersion which is onlyO(d) (which is the lowest possible
theoretical bound), but we did not have the opportunity to test them.

Even for moderately high-dimensional problems,(t, s) sequences give very
regularly spaced points. Even better results for what concerns the coefficient in
the asymptotic bound on dispersion can be obtained using(t, d) sequences in a
prime base different from 2, but we choose base 2 nets as they can be implemented
in a much more efficient way.

From a theoretical point of view, using quasi-random sequences in place of
uniform random samples does not change the main theoretical properties of the
method; however, it is possible to fully exploit the regularity of quasi-random
sequences by using a threshold which is onlyO(k−1/d). We have in particular the
following result.

THEOREM 1. If the threshold (1) in Simple Linkage is modified in the following
way:

rk;s := sk−1/d (4)

and sample points are generated according to a quasi-random sequence whose
dispersion is bounded above byα(d)k−1/d, (whereα(d) is constant with respect to
the iteration counterk) then the total number of local searches started even if the
algorithm is never stopped will remain finite provided that

s > α(d)

Proof. Thanks to the continuity off and the compactness of the feasible do-
main,f is also uniformly continuous; thus, given anyε > 0 (and, in particular, the
ε used in the criterion (2) used for deciding whether to start or not a local search),
there existsδ = δ(ε) such that

‖x − y‖ ≤ δ ⇒ |f (x)− f (y)| < ε
Thus, whenk is so large thatα(d)k−1/d ≤ δ(ε), for every pointX there will exist
another pointY in the sample whose distance satisfies‖X−Y‖ ≤ δ(ε); this implies
that function values atX andY will not differ by more thanε and, according to
criterion (2), no local search will be started fromX when using a threshold which
is larger thanα(d)k−1/d. 2
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The above proof, although extremely simple, again is based upon asymptotic
considerations and does not give any insight on the finite time behaviour of the
algorithm; in particular it should be observed that the theorem comes into effect
only when the sample is so dense that an observation off has been placed in every
element of a covering of[0,1]d with hypercubes of volumeδd . In practice, in the
first iterations,f will play an important rôle and thus it is advisable to choose
a threshold which might also be strictly lower than the value prescribed in this
theorem. In fact, choosing too large a threshold in the first iterations will inhibit
any local search except those from the global records, thus leading again to Best
Start.

4. A few numerical experiments

An extremely limited set of numerical experiments have been performed in order
to see the effect of changing both the sampling strategy from uniform to quasi-
random, and the threshold, fromO(logk/k)1/d) to O(k−1/d). Here only a single
case will be presented, while more extensive numerical experiments are planned
and will appear elsewhere.

The tests concern a quite difficult, even if low-dimensional, global optimization
problem, known as ‘the penalized Shubert function’:

f (x1, x2) =
2∏
i=1

5∑
j=1

(j cos((j + 1)xi + j))

− 0.5((x1 + 1.42513)2 + (x2+ 0.80032)2)

This 2-dimensional test function has 760 local optima, a single global one and,
provided that its special structure is not taken into account, is a quite challeng-
ing test for general purpose global optimization algorithm which considerf as
a ‘black-box’. We performed 100 independent tests on this function both using
Simple Linkage and the new method based upon quasi-random sampling; with the
term ‘independent’, we mean that for algorithms based upon random sampling we
used different seeds in initializing the random number generator; for quasi-random
sequences, we used a similar device, i.e. the generation of quasi random vectors
was started from a ‘random’ point in the sequence. The algorithms were stopped as
soon as the global optimum (which for this test function is known) was observed
for the first time with a relative error smaller than 10−6. The following table gives
the medians (over 100 runs) of the number of function evaluations, of gradient
evaluations, of local searches, the median cardinality of the sample and the average
CPU time in seconds (on a SUN Ultra workstation). In the first column of the table
we give the value ofσ ands used in the experiments.
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Simple Linkage

Parameters f.e. g.e. l.s. Sample CPU

σ = 1 5283 4104.5 165 957.5 1.71

σ = 2 3395.5 1908.5 84 1333 1.54

σ = 4 2612.5 880 43.5 1699.5 1.56

Quasi Random Linkage

Parameters f.e. g.e. l.s. Sample CPU

s = √2 3095.5 2106 84 941 0.94

s = 2 1667.5 789.5 38 799 0.98

s = 4 1925 432 24 1425.5 0.64

It is quite evident that a sensible improvement, both in terms of function eval-
uations, and in CPU time, is obtained through a more regular sample than that
obtained through quasi random sequences. The exact value ofT2(2) is 0, so the
maximum dispersion in dimension 2 of the sequence we used is bounded above by
2/
√
k; we performed 3 groups of experiments, with a strictly lower, an exact, and

a higher threshold with respect to that required by the hypothesis of the preceding
theorem.

We performed similar experiments on other moderately low-dimensional prob-
lems and the results confirm the superiority of quasi-random methods over stochas-
tic ones. When however tests were made with high-dimensional problems, like,
e.g., the minimization of the Lennard-Jones potential energy function of clusters
of atoms (see for a recent survey on computational biology Neumaier (1997),
the results were of very difficult interpretation, with quasi-random methods being
‘randomly’ much better or much worse than simple linkage. An explanation of this
unpredictable behaviour is quite easily found: in high dimensional spaces there is
no point in distinguishing between evenly distributed families of points in terms of
dispersion. In fact, even regular sequences like those we used, need to sample 2d

points just to place a single point in each of the hypercubes obtained by dividing
into two equal segments each edge of the unit hypercube. For a relatively small
problem like, e.g., the minimum energy configuration of a cluster of 13 atoms,d

is equal to 36 (variables in this problem are the coordinates, inR
3, of the centers

of each atom, except one which we arbitrarily place at the origin). So we need 236

iterations just to place an observation in each box whose edges are one half of the
original one. It is clear that, both for space and for time limitations, we always
stop our algorithms well before 236 iterations. The impression of this author is
that for high dimensional problems there is no hope of finding either stochastic or
deterministic reliable global optimization methods, unless the structure of the prob-
lem is exploited as much as possible. Obviously these considerations are a natural
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consequence of the fact that global optimization problems, even when restricted to
very special instances, remain NP-hard and, thus, no general purpose algorithm can
be expected to perform well on any problem, unless the structure of the problem is
taken into account as much as possible.

Investigations are currently planned to understand how the structure of the prob-
lem might be taken into account in designing simple-linkage-like methods for high
dimensional problems.

Acknowledgment

This research has been partially supported by project M.O.S.T.

References

Bratley, P., Fox, B.L., and Niederreiter, H. (1994), Algorithm 738: Programs to generate Niederre-
iter’s low-discrepancy sequences,ACM Transactions on Mathematical Software20: 494–495.

Deheuvels, P. (1983), Strong bounds for multidimensional spacings,Z. Wahrsch. Verw. Geb.64:
411–424.

Drmota, M. and Tichy, R. (1997), Sequences, discrepancies and applications, Vol. 1651 ofLecture
Notes in Mathematics, eds., A. Dold, F. Takens, Springer Verlag, New York.

Halton, J.H. (1960), On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals,Numer. Math.2: 84–90.

Locatelli, M. (1996), Convergence properties of simulated annealing for continuous global optimiza-
tion, Journal of Applied Probability33: 1127–1140.

Locatelli, M. and Schoen, F. (1996), Simple Linkage: Analysis of a threshold-accepting global
optimization method,Journal of Global Optimization9: 95–111.

Locatelli, M. and Schoen, F. (1998), Random Linkage: a family of acceptance/rejection algorithms
for global optimisation,Mathematical Programming, to appear.

Neumaier, A. (1997), Molecular modeling of proteins and mathematical prediction of protein
structure,SIAM Review39: 407–460.

Niederreiter, H. (1992), Random number generation and quasi-Monte Carlo methods, SIAM
Ribenboim, P. (1995), The New book on Prime Number Records, 3rd edn, Springer Verlag. New

York.
Rinnooy Kan, A.H.G. and Timmer, G. (1987a), Stochastic global optimization methods. Part I:

Clustering methods,Mathematical Programming39: 27–56.
Rinnooy Kan, A.H.G. and Timmer, G. (1987b), Stochastic global optimization methods. Part II:

Multi level methods,Mathematical Programming39: 57–78.
Schoen, F. (1997), Global optimization methods for high-dimensional problems,European Journal

of Operations Research, submitted.
Schoen, F. (1998), Stochastic global optimization: Two phase methods, in C. Floudas and P.

Pardalos (eds.),Encyclopedia of Optimization, to appear. Kluwer Academic Publishers, Dor-
drecht/Boston/London.


